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Abstract
Using the SU(N) representation of the group theory, we derive the general form
of the spin swapping operator for the quantum Heisenberg spin-s systems. We
further prove that such a spin swapping operator is equal to the spin singlet
pairing operator under the partial transposition. For SU(2) invariant states,
it is shown that the expectation value of the spin swapping operator and its
generalizations, the permutations, can be used as an entanglement witness,
especially, for the formulation of observable conditions of entanglement.

PACS numbers: 03.67.−a, 03.67.Mn, 03.65.Ud

1. Introduction

Entanglement is one of the most intriguing properties of quantum physics and the key ingredient
of quantum information and processing. To determine the existence of entanglement, partial
transposition of the density matrix is introduced [1, 2]. In 2 × 2 and 2 × 3 dimensional Hilbert
spaces, the requirement of positive partial transposition (PPT) represents a strong necessary
and sufficient criterion for the separability of states, the so-called Peres–Horodecki criterion
[1, 2]. A useful entanglement measure for higher dimensions, the negativity, is defined by the
sum of absolute values of negative eigenvalues of the partial transposed density matrix [3],
though such a criterion of entanglement is no longer sufficient.

Recently, it has been realized that symmetries in the mixed states play an important role in
characterizing the entanglement properties [4–8]. For the SU(2) invariant states in dimensions
2 × L, 3 × M and 4 × 4, respectively, the Peres–Horodecki criterion has been proved to be
necessary and sufficient [7–9], where L = 2j + 1 with arbitrary spin-j and M = 2j ′ + 1 with
j ′ being integer.

To analyse the general structure of the state space for bipartite N×N quantum systems, we
can regard the subsystems as quantum Heisenberg spin-s systems (N = 2s + 1) and transform
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according to an SU(N) irreducible representation of the group theory. By the requirement of
SU(2) invariance, we can substantially reduce the dimensionality of the state space, and the
entanglement criteria become easy to be handled analytically.

On the other hand, the entanglement properties in Heisenberg spin systems have received
much attention [10–37]. For the quantum spin-1/2 system, there is an SU(2) invariant operator,
i.e., the swapping operator

Si,j = 2si · sj + 1
2 , (1)

which switches the spin states on the sites of i and j . Such a swapping operator satisfies
S2

i,j = 1 and S†
i,j = Si,j . Therefore, every SU(2) invariant density matrix can be expressed as

ρi,j = b + cSi,j with suitable real parameters b and c. Actually, one can simply use a single
parameter 〈Si,j 〉 = Tr(ρi,j Si,j ), which ranges from −1 to 1, to describe these SU(2) invariant
states. It is important to note that for an SU(2) invariant state, the condition 〈Si,j 〉 < 0 has been
proved to be sufficient and necessary for entanglement [38]. There also exists a simple relation
between the concurrence [39], quantifying two-qubit entanglement, and the expectation value
of the swapping operator with respect to the density matrix ρi,j

Cij = max(0,−〈Si,j 〉). (2)

However, for s > 1/2, the operator 2si · sj + 1
2 can no longer be regarded as a spin swapping

operator, because the SU(2) description is not the faithful fundamental representation for the
quantum spin-s operators.

In this paper, based on the SU(N) representation of the group theory, we will first derive
the general form of the spin swapping operator for the quantum Heisenberg spin-s system.
Then it will be proved that the partial transposed swapping operator is just equal to the singlet
pairing operator defined in the tensor product space of the fundamental SU(N) representation
and its conjugate one. For an SU(2) invariant spin-s system, we will show that the expectation
value of the swapping operator gives rise to the leading contribution to the negativity expressed
in terms of the Wigner 6-j symbol. Generalized to the many-body particle states, it will be
concluded that the expectation values of the swapping and its generalizations, the permutations,
can be used as an entanglement witnesses (EWs) [40–42], and are useful for the formulation
of observable conditions of entanglement.

2. Swapping and singlet projector for quantum Heisenberg spin-s systems

2.1. Spin swapping operator

To describe a spin-s operator quantum mechanically, we use the good quantum numbers:
s2 = s(s + 1) and sz = −s,−s + 1, . . . , s. The dimensionality of the local Hilbert space is thus
N = 2s + 1. It is natural to introduce an SU(N) fundamental symmetry group with generators
in terms of bosons/fermions [43]

Fν
µ(i) = a

†
i,µai,ν, (3)

where µ and ν denote the spin projection indices from 1, 2, . . . , 2s + 1, and i denotes the site.
By using the commutation/anticommutation relations,

[ai,µ, aj,ν]∓ = [
a
†
i,µ, a

†
j,ν

]
∓ = 0,

[
ai,µ, a

†
j,ν

]
∓ = δi,j δµ,ν, (4)

we can prove that the generators satisfy the following commutation relation of the SU(N)
Lie algebra [44][

Fν
µ(i), F ν ′

µ′ (j)
] = δi,j

(
δν,µ′Fν ′

µ (i) − δµ,ν ′Fν
µ′(i)

)
. (5)
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Accordingly, the corresponding spin operator is expressed as

sα
i =

∑
µ,ν

a
†
i,µT α

µνai,ν, (6)

where T α (α = x, y, z) are the corresponding N ×N matrices for the quantum spin-s operator.
We can also prove that the commutation relations of the SU(2) Lie algebra are also satisfied
when inserting the expressions of the spin-s operators. In order to fix the magnitude of the
quantum spins s2

i = s(s + 1), a local constraint
∑

µ a
†
i,µai,µ = 1 has to be imposed as well.

With the help of these SU(N) generators, the general swapping operator between any two
sites with N local states each can be constructed as

Si,j =
∑
µ,ν

F ν
µ(i)Fµ

ν (j) =
∑
µ,ν

a
†
i,µa

†
j,νaj,µai,ν, (7)

which is the unique invariant operator under the local SU(N) unitary transformation. In analogy
with the Werner states [4], we can define the SU(N) × SU(N) invariant states as follows,

ρi,j = pρ− + (1 − p)ρ+, ρ± = 1

N(N ± 1)
(1 ± Si,j ), (8)

where p = (1 + 〈Si,j 〉)/2 is a positive parameter ranging from 0 to 1. Actually, the expectation
value of this generalized swapping operator 〈Si,j 〉 = Tr(ρi,j Si,j ), which still ranges from −1
to 1, can be used to describe these SU(N) × SU(N) invariant states. We will further prove that
the condition 〈Si,j 〉 < 0 is sufficient for entanglement.

In order to make the swapping operator a useful EW, it is essential to rewrite this SU(N)
swapping operator in terms of cumulants of the original SU(2) spin-s operators. We first note
that

si · sj = 1
2 [(si + sj )

2 − 2s(s + 1)]. (9)

The Hilbert space is thus given by the tensor product space of two quantum spins, and can be
decomposed into a sum of irreducible representations in terms of projection operators

PF =
F∑

M=−F

|F,M〉〈F,M|, (10)

where F = 0, 1, 2, . . . , 2s denotes the total spin quantum number, PF is the projection
operator of the total spin-F channel, and |F,M〉 corresponds to the irreducible subspace of
the tensor product representation for a fixed F. Therefore, a set of relations can be derived as

(si · sj )
n =

2s∑
F=0

λn
F PF , λF = 1

2
[F(F + 1) − 2s(s + 1)], (11)

where the integer n = 0, 1, 2, . . . , 2s. Namely, we have a set of equations for the projection
operators

P0 + P1 + P2 + · · · + P2s = 1,

λ0P0 + λ1P1 + λ2P2 + · · · + λ2sP2s = si · sj ,

λ2
0P0 + λ2

1P1 + λ2
2P2 + · · · + λ2

2sP2s = (si · sj )
2, (12)

. . . . . .

λ2s
0 P0 + λ2s

1 P1 + λ2s
2 P2 + · · · + λ2s

2sP2s = (si · sj )
2s .
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Note that the coefficients in front of the projection operators are of the form λn
F , i.e., the

corresponding matrix is of the Vandermonde type with the determinant∣∣∣∣∣∣∣∣∣∣∣

1 1 1 . . . 1
λ0 λ1 λ2 . . . λ2s

λ2
0 λ2

1 λ2
2 . . . λ2

2s

. . . . . . . . . . .

λ2s
0 λ2s

1 λ2s
2 . . . λ2s

2s

∣∣∣∣∣∣∣∣∣∣∣
=

∏
k<l

(λk − λl). (13)

By using the property of the Vandermonde determinant, we can obtain the general expression
for the projection operators in terms of the SU(2) spin-s operators

PF =
2s∏

k=0�=F

[
si · sj − λk

λF − λk

]
. (14)

Moreover, the general SU(N) invariant swapping operator can thus be expressed as

Si,j = (−1)2s

2s∑
F=0

(−1)F PF . (15)

Namely, the general spin swapping operator is written as a linear combination of all projection
operators for the spin-F channels with alternating sign, and Si,j is symmetric for integer spins
and antisymmetric for the odd-half integer spins when interchanging the spin states on the
sites of i and j . Similar expressions for the projections had appeared in the literature [45, 46].

As examples, the first four expressions of the general swapping operators are explicitly
written as

(i) For s = 1/2, the above expression gives rise to

Si,j = 2si · sj + 1
2 , (16)

which is invariant under the SU(2) unitary transformation.
(ii) For s = 1, the swapping operator is

Si,j = (si · sj )
2 + (si · sj ) − 1, (17)

which is invariant under the SU(3) unitary transformation.
(iii) For s = 3/2, the swapping operator takes the form

Si,j = 2
9 (si · sj )

3 + 11
18 (si · sj )

2 − 9
8 (si · sj ) − 67

32 , (18)

which is invariant under the SU(4) unitary transformation.
(iv) For s = 2, the swapping operator is expressed as

Si,j = 1
36 (si · sj )

4 + 1
6 (si · sj )

3 − 13
36 (si · sj )

2 − 5
2 (si · sj ) − 1, (19)

which is invariant under the SU(5) transformation.
Thus, the expectation value of the swapping operator 〈Si,j 〉 can be written in terms of the

cumulants of the quantum spin-s correlators. In solid-state physics, the swapping operator
is used to represent the generalized SU(N) invariant quantum Heisenberg spin-s model, i.e.,
H = J

∑
〈i,j〉 Si,j , to describe the possible nearest-neighbour couplings of magnetic spin-s

moments. In one dimension, there exists the so-called Bethe ansatz exact solution [47, 48].
For the antiferromagnetic coupling (J > 0), the ground state is a singlet with spin gapless
excitations [49].
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2.2. Spin singlet projector

Among all the projection operators, the singlet projector represents a maximally entangled
state, and its expectation value in some cases has been used for formulation of necessary and
sufficient conditions of entanglement. In terms of original SU(2) spin-s operators, we have

Pij = PF=0 =
2s∏

k=1

[
1 − 2

si · sj + s(s + 1)

k(k + 1)

]
. (20)

The corresponding spin singlet state can be projected onto the angular momentum singlet state

|0, 0〉 = 1√
2s + 1

s∑
m=−s

(−1)s−m|s,m〉i ⊗ |s,−m〉j . (21)

In particular, the first four expressions for the singlet projectors can be explicitly
written as

(i) For s = 1/2, the singlet operator is

Pij = 1
4 − si · sj . (22)

Then, the swapping operator Si,j and the singlet projection operator Pi,j are not
independent. They have the following relation Si,j = (1 − 2Pi,j ). The entanglement
criterion for the SU(2) invariant states 〈Si,j 〉 < 0 implies that 〈Pi,j 〉 > 1/2.

(ii) For s = 1, the singlet projection is given by

Pi,j = 1
3 [(si · sj )

2 − 1]. (23)

(iii) For s = 3/2, the singlet projection is written as

Pi,j = 33

128
+

31

96
si · sj − 5

72
(si · sj )

2 − 1

18
(si · sj )

3. (24)

(iv) For s = 2, the singlet projection is expressed as

Pi,j = −1

3
si · sj − 17

180
(si · sj )

2 +
1

45
(si · sj )

3 +
1

180
(si · sj )

4. (25)

All these singlet projectors display uniform SU(2) invariance superficially, but it will be further
proved that a non-uniform higher symmetry is associated with each singlet projector.

Therefore, the expectation value of the singlet projectors can be also expressed in terms
of the cumulants of the quantum spin-s correlators. In solid state physics, the singlet pairing
projection is also used to represent another type of the generalized quantum Heisenberg spin-s
model, i.e., H = −J

∑
〈i,j〉 Pi,j , to describe the nearest-neighbour couplings of the magnetic

spin-s moments. In one dimension, an exact solution has been found based on Temperley–Lieb
algebra [45]. Moreover, in the case of J > 0, the ground state is a dimerized-like singlet state
with gapful spin excitations [46].

2.3. Relation between swapping and singlet pairing operators

According to the group theory [44], for an SU(N) Lie group with s > 1/2, two kinds of
spinors (upper and lower) can actually be defined. The lower spinor transforms according
to the SU(N) fundamental representation, while the upper spinor transforms according to the
SU(N) conjugate representation. More importantly, the conjugate representation is in general
independent of the fundamental representation. Only for s = 1/2 (N = 2), due to the presence
of an additional particle–hole symmetry, these two representations are equivalent to each
other [44].
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The generators of the SU(N) conjugate representation are defined by [43]

F̃ ν
µ(i) = a

†
i,νai,µ, (26)

where µ and ν denote the spin projection indices from 1, 2, . . . , 2s + 1, and i denotes the site.
By using the commutation/anticommutation relations for bosons/fermions, we can prove the
following commutation relation[

F̃ ν
µ(i), F̃ ν ′

µ′(j)
] = δi,j

(
δν,µ′ F̃ ν ′

µ(i) − δµ,ν ′ F̃ ν
µ′(i)

)
, (27)

which also forms an SU(N) Lie algebra. Consider two quantum spins, i.e., the bipartite system.
With the help of generators of the SU(N) fundamental and its conjugate representations, a
singlet pairing operator between two sites i and j can be constructed as

P′
i,j =

∑
µ,ν

F ν
µ(i)F̃ µ

ν (j) =
∑
µ,ν

a
†
i,µa

†
j,µaj,νai,ν, (28)

which is the unique SU(N) × S̃U(N) invariant operator and is positive with norm d = 2s + 1.
The corresponding maximally entangled state is expressed as

|0, 0〉′ = 1√
2s + 1

s∑
m=−s

|s,m〉i ⊗ |s,m〉j . (29)

In analogy with the so-called symmetric/isotropic states [5], we can define the SU(N) × S̃U(N)

invariant states, and every SU(N) × S̃U(N) invariant state can be expressed as ρi,j = b′ +c′P′
i,j

with suitable real parameters b′ and c′, or in terms of a convex combination of two minimal
projections

ρ1 = 1

2s + 1
P′

i,j , ρ2 = 1

4s(s + 1)
(1 − ρ1). (30)

Now we are in the position to establish the relation between the general spin swapping
and the singlet pairing operators. In studying entanglement a powerful tool, the operation of
partial transposition, has been introduced [1, 2]. The partial transposition of an operator in
the N × N product space of a bipartite system is defined in a product basis by transposing
only the indices belonging to the second basis and keeping those pertaining to the first basis.

When applying such a partial transposition operation to the SU(N) × S̃U(N) invariant singlet
pairing operator, we find a very important relation

P′
i,j =

∑
µ,ν

a
†
i,µa

†
j,µaj,νai,ν ⇔

∑
µ,ν

a
†
i,µa

†
j,νaj,µai,ν = Si,j . (31)

Namely, the partial transpose of the SU(N) × S̃U(N) invariant singlet pairing operator is
exactly equivalent to the uniform SU(N) × SU(N) invariant swapping operator. The inverse
statement also holds true. This is one of the main results of our present paper. Actually a
similar relation exists between the Werner states and symmetric/isotropic states [6].

Moreover, Breuer has convincingly demonstrated that [8] the partial transposition
is equivalent to the partial time reversal transformation of the quantum Heisenberg
spin-s operator. Under such a partial time reversal transformation, the corresponding

SU(N) × S̃U(N) invariant singlet pairing state exactly transforms into the singlet state in
the fundamental SU(N) representation

|0, 0〉′ = 1√
2s + 1

s∑
m=−s

|s,m〉i ⊗ |s,m〉j ⇔ 1√
2s + 1

s∑
m=−s

(−1)s−m|s,m〉i ⊗ |s,−m〉j ,
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implying that the spin singlet projection state defined in the SU(N) fundamental representation
is equal to the spin singlet pairing state defined by the product of the SU(N) fundamental and
its conjugate representations. Moreover, the singlet projection operator Pi,j shares the same

symmetry of SU(N) × S̃U(N) displayed by the singlet paring operator.

3. Swapping operator and its generalizations as entanglement witnesses

Formulation of different criteria, which allows one to distinguish in experiment entangled
and disentangled states, is one of the most important issues in the field of foundations of
quantum physics and quantum information processing. The corresponding studies lead to
quick development of the theory of EWs [50–58]. An entanglement witness [40–42] is a
Hermitian operator with a key property that its expectation value on a separable state is always
larger than or equal to zero. So, if the expectation value on a state is less than zero, then the
corresponding state is entangled.

3.1. Swapping and negativity

Consider a many-body state, we first study the two-spin state, and the generalization to a
many-particle spin state is straightforward. The swapping operator exhibits a uniform SU(N)
symmetry, and we may exploit it to detect entanglement in a quantum Heisenberg spin-s
system. The action of the swapping on a product state is given by

Sij |φi〉 ⊗ |φj 〉 = |φj 〉 ⊗ |φi〉. (32)

A separable (non-entangled) two-particle reduced density matrix ρij is introduced as

ρij =
∑

k

pk

∣∣φk
i

〉〈
φk

i

∣∣ ⊗ ∣∣φk
j

〉〈
φk

j

∣∣, (33)

where the coefficients pk are positive real numbers, satisfying
∑

k pk = 1, and
∣∣φk

i

〉
is the state

for the ith particle. Evaluating the expectation value of Si,j on this separable state, we find
that

〈Si,j 〉 = Tr(Si,j ρij )

= Tr

(∑
k

pk

∣∣φk
j

〉〈
φk

i

∣∣ ⊗ ∣∣φk
i

〉〈
φk

j

∣∣)
=

∑
k

pk

∣∣〈φk
i

∣∣φk
j

〉∣∣2 � 0. (34)

This inequality is fulfilled for all separable states, and it directly follows that any state with
〈Si,j 〉 < 0 is sufficiently entangled. In other words, the swapping has the property of an EW
and the following theorem holds true.

Proposition 1. If the expectation value of Sij on all separable states is larger than or equal
to zero, then the inequality

〈Sij 〉 < 0 (35)

implies that the corresponding quantum state is sufficiently entangled.

For an SU(2) invariant state of spin-1/2 systems, the condition 〈Si,j 〉 < 0 is sufficient and
necessary for entanglement [38]. We would like to emphasize that the above theorem is not
restricted to the spin systems, but also applicable to any composite systems consisting of two
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identical subsystems, e.g., two d-level systems and two identical infinite-dimensional systems.
It is interesting to note that Horodecki et al had found that any permutation of indices of a
density matrix leads to the separability criterion [60]. Here our considerations focus on the
swapping of the quantum spin states on two different sites. What is more, our analyses have
shown that not all such permutations can be regarded as a separability criterion.

The swapping operator has appeared in the expression of the concurrence in spin-1/2
systems, and it can be expected to manifest itself in the negativity expression of the SU(2)-
invariant states for arbitrary quantum spin-s systems. For an SU(2) invariant state, the density
operator can be written as a linear combination of the projection operators,

ρ = 1

2s + 1

2s∑
F=0

αF√
2F + 1

PF , αF = 2s + 1√
2F + 1

Tr(ρPF ), (36)

where F is the quantum number of the total angular momentum (si + sj ). After partial
transposition with respect to the second spin, the transposed density matrix still has an SU(2)
symmetry, and can be written as [7]

ρT2 = 1

2s + 1

2s∑
K=0

α′
K√

2K + 1
P′

K, (37)

where K is the quantum number of another angular momentum composed of si and
sj : Kx

ij = sx
i − sx

j ,K
y

ij = s
y

i + s
y

j ,Kz
ij = sz

i − sz
j . As shown by Breuer [8], a relation

between the coefficient vectors 	α′ and 	α can be established

	α′ = �	α, �FK =
√

(2F + 1)(2K + 1)

(
s s F

s s K

)
, (38)

where 	α = (α0, α1, . . . , α2s)
T , 	α′ = (α′

0, α
′
1, . . . , α

′
2s)

T , and �FK is given by the Wigner 6-j
symbol [59]. From equation (37), the negativity of the corresponding density matrix is then
calculated as

N = 1

2s + 1

2s−1∑
K=0

max

(
0,−

√
2K + 1

2s∑
F=0

�KF αF

)
, (39)

where the last term in the K summation does not contribute to the negativity.
For an s = 1/2 bipartite system, the above negativity gives rise to N = max(0,−〈si · sj 〉).

However, for the s = 1 bipartite system, the corresponding negativity is given by

N = 1
3 max(0,−〈si · sj 〉 − 〈(si · sj )

2〉) + 1
2 max(0, 〈(si · sj )

2〉 − 2). (40)

The expectation values of the swapping operators have included in the above expressions.
From the properties of the Wigner 6-j symbol [59], the first term in the summation over K is
given by

�0F = (−1)2s+F

√
2F + 1

2s + 1
. (41)

Then, the leading term in the negativity expression can be evaluated as

1

2s + 1
max

(
0, (−1)2s+1

2s∑
F=0

(−1)F Tr(ρPF )

)
= 1

2s + 1
max(0,−〈S〉). (42)

Therefore, being as an EW, the swapping operator has been included in the expression of
negativity as the leading contribution for arbitrary quantum spin-s systems. Actually, this is
also one of the main results of the present paper.
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As an application of the above result, for the following SU(2) invariant pure state

ρ = 1

4s + 1
P2s−1, (43)

the expectation value of the swapping operator on this state is found to be −1, where only the
term containing swapping operator survives. Thus, the negativity for this particular pure state
is 1/(2s + 1), and the corresponding state is entangled.

3.2. Generalization of swapping

A natural generalization of the swapping is the permutation R. The action of R on a product
state is given by

R|φ1〉 ⊗ |φ2〉 ⊗ · · · ⊗ |φN 〉 = |φi1〉 ⊗ |φi2〉 ⊗ · · · ⊗ |φiN 〉. (44)

All N ! permutations form a permutation group. We now evaluate R on a separable state. A
N-particle density matrix ρ is separable (non-entangled) if it can be decomposed into

ρ =
∑

k

pk

∣∣φk
1

〉〈
φk

1

∣∣ ⊗ · · · ⊗ ∣∣φk
i

〉〈
φk

i

∣∣ ⊗ · · · ⊗ ∣∣φk
j

〉〈
φk

j

∣∣ ⊗ · · · ⊗ ∣∣φk
N

〉〈
φk

N

∣∣, (45)

where the coefficients pk are positive real numbers satisfying
∑

k pk = 1, and |φk
i 〉 is the state

for the ith particle. For some permutation operators, such as swaps, we can prove that the
corresponding expectation value on a separable state is always large than or equal to zero;
we thus conclude that these permutation operators can also be viewed as EWs. Then, we have
following conclusion.

Proposition 2. If the expectation value of permutation R on all separable states is large than
or equal to zero, then the inequality

〈R〉 < 0 (46)

implies that the corresponding quantum state is sufficiently entangled.

For N = 2, the permutation group contains a swap and an identity. For N = 3, the
permutation group contains six elements, and three different swappings, namely, S12, S13 and
S23 are EWs. For N = 4, there are 24 elements, and except swappings, there are other
permutations that can be viewed as EWs, e.g., S12S34, S13S24, and S14S23. Among them, the
operator S14S23 can be viewed as an mirror reflection. Furthermore, any superpositions of the
EWs

∑M
k=1 ckPk with ck being positive can also be viewed as new EWs.

3.3. Singlet projector as an EW

For the SU(2) invariant states, the negativity for the spin-1 bipartite systems has been obtained
as

N = 1
2 max(0, 3〈Pi,j 〉 − 1) + 1

3 max(0,−〈Sij 〉). (47)

We have observed that the inequality 〈Pi,j 〉 > 1/3 also implies that the corresponding state
is entangled. As we have shown in the previous section, the spin swapping operator and
singlet projector are independent though the partial transposition is related to them. For the
SU(2)-invariant state, there can be two different sufficient entanglement conditions for the
spin-1 bipartite systems: one is 〈Si,j 〉 < 0 and another is 〈Pi,j 〉 > 1/3. In fact, we can prove
a more general theorem for arbitrary quantum spin-s systems.
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Proposition 3. If the expectation value of the singlet projector satisfies

〈Pi,j 〉 >
1

2s + 1
, (48)

the corresponding many-body quantum spin state is sufficiently entangled.

Proof. A singlet state is given by

|�s〉 = 1√
2s + 1

s∑
m=−s

(−1)s−m|s,m〉 ⊗ |s,−m〉, (49)

and the singlet projector can be expressed as P0 = |�s〉〈�s |. A product state can always be
written as

|	〉 = |	1〉 ⊗ |	2〉 =
∑
m,m′

ambm′ |s,m〉 ⊗ |s,m′〉, (50)

where
∑

m |am|2 = ∑
m |bm|2 = 1. Then the expectation value 〈P0〉 with respect to this

product state is found to be

〈Pij 〉 = 1

2s + 1

∣∣∣∣∣
s∑

m=−s

(−1)s−mamb−m

∣∣∣∣∣
2

� 1

2s + 1
, (51)

where the inequality follows from the Schwatz inequality and the normalization conditions.
We may easily extend the above inequality to the case of any separable state. For an arbitrary
separable state ρsep = ∑

k pkρk with ρk being the product state. The expectation value of Pij

satisfies the inequality

〈Pij 〉 = Tr(Pij ρ) =
∑

k

pk Tr(Pij ρk) � 1

2s + 1
, (52)

where we have used equation (51). Therefore, the theorem has been proved, and at the same
time the operator

(
Pij − 1

2s+1

)
is another class of EW. �

3.4. Relations with other EWs

The quantum spin Hamiltonians have already been used as EWs to detect entanglement
[50, 51]. Here, we would like to study the relations among them. Let us consider the
following Hamiltonian

H = J
∑
〈i,j〉

Si,j , (53)

which is a sum of all different swaps on the nearest-neighbour sites. We know that every
expectation value of each swap on a separable state is large than or equal to zero. Then, the
expectation value of the Hamiltonian on a separable state satisfies 〈H 〉 � 0. Therefore, the
Hamiltonian is regarded as an EW too. For any eigenstate, if the eigenenergy is less than
zero, the many-body state must be entangled. We see that a new EW was constructed by
superpositions of swaps. In fact, any superposition of swaps with positive coefficients is EWs
as well. Furthermore, it is more interesting to consider some other models consisting of the
swapping operators with supersymmetries [61].

Similarly, we consider the following Hamiltonian in terms of the singlet projections

H = J
∑
〈i,j〉

(
Pi,j − 1

2s + 1

)
. (54)

From the proposition 2, we can easily prove that 〈H 〉 � 0 for a separable state, indicating that
the Hamiltonian can be viewed as an EW. Any superposition of operators P̃i,j = (

Pi,j − 1
2s+1

)
with positive coefficients is EWs as well.
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4. Summary

We have derived the general form of the spin swapping operator for the quantum Heisenberg
spin-s systems, and proved that under the partial transposition the general spin swapping
operator is equal to the singlet projection operator. For SU(2) invariant bipartite spin-s
systems, we also found that the expectation value of the swapping operator is the leading
contribution to the negativity. Generalized to the many-body particle states, the expectation
values of the swapping and permutation operators can be used as an entanglement witness,
which, moreover, in some cases can be used for formulation of necessary and sufficient
condition of entanglement. This is a quite important and new mathematical fact, which could
be used for the formulation of observable conditions of entanglement in the near future.
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